## Food and Drug Administration, HHS

- 173 345 Chloropentafluoroethane
- 173.350 Combustion product gas.
- 173.355 Dichlorodifluoromethane.
- 173.356 Hydrogen peroxide.
- 173.357 Materials used as fixing agents in the immobilization of enzyme preparations.
- 173.360 Octafluorocyclobutane.
- 173.368 Ozone.
- 173.370 Peroxyacids.
- 173.375 Cetylpyridinium chloride.
- 173.385 Sodium methyl sulfate.
- 173.395 Trifluoromethane sulfonic acid.
- 173.400 Dimethyldialkylammonium chloride.

AUTHORITY: 21 U.S.C. 321, 342, 348.

SOURCE: 42 FR 14526, Mar. 15, 1977, unless otherwise noted.

EDITORIAL NOTE: Nomenclature changes to part 173 appear at 61 FR 14482, Apr. 2, 1996, 66 FR 56035, Nov. 6, 2001, and 66 FR 66742, Dec. 27, 2001.

### Subpart A—Polymer Substances and Polymer Adjuvants for Food Treatment

# § 173.5 Acrylate-acrylamide resins.

Acrylate-acrylamide resins may be safely used in food under the following prescribed conditions:

- (a) The additive consists of one of the following:
- (1) Acrylamide-acrylic acid resin (hydrolyzed polyacrylamide) is produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid, with the greater part of the polymer being composed of acrylamide units.
- (2) Sodium polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in a sodium silicate-sodium hydroxide aqueous solution, with the greater part of the polymer being composed of acrylate units.
- (b) The additive contains not more than 0.05 percent of residual monomer calculated as acrylamide.
- (c) The additive is used or intended for use as follows:
- (1) The additive identified in paragraph (a) (1) of this section is used as a flocculent in the clarification of beet sugar juice and liquor or cane sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per million by weight of

the juice or 10 parts per million by weight of the liquor or the corn starch hydrolyzate.

(2) The additive identified in paragraph (a)(2) of this section is used to control organic and mineral scale in beet sugar juice and liquor or cane sugar juice and liquor in an amount not to exceed 2.5 parts per million by weight of the juice or liquor.

[42 FR 14526, Mar. 15, 1977, as amended at 46 FR 30494, June 9, 1981]

# § 173.10 Modified polyacrylamide resin.

Modified polyacrylamide resin may be safely used in food in accordance with the following prescribed conditions:

- (a) The modified polyacrylamide resin is produced by the copolymerization of acrylamide with not more than 5-mole percent  $\beta$ -methacrylyloxyethyltrimethylammonium methyl sulfate.
- (b) The modified polyacrylamide resin contains not more than 0.05 percent residual acrylamide.
- (c) The modified polyacrylamide resin is used as a flocculent in the clarification of beet or cane sugar juice in an amount not exceeding 5 parts per million by weight of the juice.
- (d) To assure safe use of the additive, the label and labeling of the additive shall bear, in addition to the other information required by the act, adequate directions to assure use in compliance with paragraph (c) of this section.

#### § 173.20 Ion-exchange membranes.

Ion-exchange membranes may be safely used in the processing of food under the following prescribed conditions:

- (a) The ion-exchange membrane is prepared by subjecting a polyethylene base conforming to §177.1520 of this chapter to polymerization with styrene until the polystyrene phase of the base is not less than 16 percent nor more than 30 percent by weight. The base is then modified by reaction with chloromethyl methyl ether, and by subsequent amination with trimethylamine, dimethylamine, diethylenetriamine, or dimethylethanolamine.
- (b) The ion-exchange membrane is manufactured so as to comply with the